Planet formation around low-mass stars: The moving snow line and super-Earths

Our first paper is about how the snow-line in a protoplanetary disk can move due to evolution of the central star, and how it helps the formation of super-Earth mass planets around M Dwarfs. Kennedy, Kenyon & Bromley (2006) uses a simple disk evolution model, with which we are starting to link formation of planets with that of their parent stars.

As a low-mass red dwarf is born it contracts to its main sequence size over hundreds of millions of years. This contraction limits the radiating area of the star, and so it becomes fainter, and the surrounding disk in which planets form becomes cooler.

The cooling of the star means that the distance where ices condense (known as the ‘snow line’) moves inward. In the same way that it is easier to build a snowman above the snow line on a mountain, the presence of ices in the planet forming disk makes it easier to build planets. These planets can be several times larger than our Earth, and are largely made up of ice, roughly similar in structure to Neptune.

The paper had an associated press release, and subsequently generated a bunch of media attention

ANU Press release | CfA Press Release | Uni of Utah press release | Universe Today | Spaceflight Now | Space Daily | Centauri Dreams | PhysOrg | Unexplained Mysteries | Astrobiology Magazine | SciFi Source Book | AstroFind.net | Science Alert | ABC Radio National | ABC Canberra | Nature

The paper can be found through the NASA Astrophysics Data System. For more information on my PhD have a look at the main PhD page.

0 Responses to “Planet formation around low-mass stars: The moving snow line and super-Earths”


Comments are currently closed.