Planet formation around stars of various masses: The snow line and the frequency of gas giants

This paper was just accepted to the Astrophysical Journal. It considers a simple disk and snow line model, and uses this to predict the likelihood of stars of different masses harbouring gas giants. We think gas giant frequency increases with stellar mass, which is consistent with observations at present.

In summary, observations indicate that disk mass changes roughly with stellar mass, with a wide distribution of masses at a given stellar mass. Therefore more massive stars on average have more material available for planet formation. In addition, there appears to be a threshold protoplanet mass for forming gas giants of about ten Earth masses. Around more massive stars, a higher fraction of the disks can form protoplanets greater than ten Earth masses, so these stars are more likely to form gas giants.

Recent observations by John Johnson indicate a trend of increasing planet frequency with stellar mass, as our paper predicts. Future observations will improve statistics to solidify this result. In the more distant future, planet discoveries will find how processes like migration and scattering have influenced the distribution of planets we can see now.

The paper can be found through the NASA Astrophysics Data System. For more information on my PhD have a look at the main PhD page.

0 Responses to “Planet formation around stars of various masses: The snow line and the frequency of gas giants”


Comments are currently closed.