Planet Formation Across the Stellar Mass Spectrum

Grant Kennedy
Supervisor: Scott Kenyon (CfA)
Why Stellar Mass?

- Things change:
 - Luminosity/Temperature
 - Orbital period
 - Disk mass and lifetime
 - These all impact on planet formation
 - e.g. giant planet frequency
Outline

- Background
- Snow Line (ApJL 06)
- Giant Planet Frequency (ApJ 08)
- Disk Dispersal (ApJ to be resubmitted)
Background
Star-Disk-Planet Timeline

- Star
- Disk
- Planet

- Mass

- PMS
- main sequence
- evolved
- debris disks
- LHB
- exoplanets
- found

10^5 10^6 10^7 10^8 10^9

Time (years)

-accretes ↔ disperses

-star + disk

-~mm ~km

-giants & migration

earths
T Tauri star + disk

Hubble

Not Hubble
Snow Line

- Distance where disk becomes cold enough to water to be in ice phase
- Extra (icy) material to make planets
- Temperature determined by stellar luminosity, disk accretion, or both.
Grain growth
Planetesimals

Kokubo & Ida 1998
Viscous Evolution

- spreads disk
- accretion
- depletion
- declines over time
- heats disk
PMS evolution

Isochrones at: 1×10^6 3×10^6 1×10^7 years

searched on: si

Siess et al 2000
Isolation

- all mass in an annulus put into one protoplanet
Gas Giants

Pollack et al. 1996
Photoevaporation

- critical radius
- wind
- accretion
Main Sequence
Debris disks

Kalas et al. 2005
stars with detectable planets

\[
\begin{array}{|c|c|c|}
\hline
N_{\text{HOSTS}} & N_{\text{STARS}} \\
\hline
3 & 169 \\
34 & 803 \\
9 & 101 \\
\hline
\end{array}
\]
Snow Line
Snow Line Moves

- Snow line moves inward as star contracts
- Sets where “super-Earth” planets can form
Gas Giant Frequency
Motivation

- Better model of snow line
 - Ida & Lin use L_{star}^2 proportionality
 - Too far for intermediate-mass stars
- Look at formation regions
- Predict/Explain frequency with stellar mass
Snow Line and Isolation

disk lifetime

isolation masses

snow line
Regions where giants form

\[t_{\text{core}} = 1.0 \times 10^6 \text{yr} \]
\[M_{\text{core}} = 10 M_\oplus \]
\[\delta = 1.5 \]
Disk mass range

no of stars

low-mass stars

disk mass scales with stellar mass

higher-mass stars

disk mass
Fraction of stars with gas giants
Summary

- Giant planet frequency increases with stellar mass
- Lower metallicity of intermediate mass planet hosts is due to more massive disks
Hot Super-Earths
Motivation

- Searches for low-mass planets
 - CoRoT/Kepler - transits - short periods
- Structural planet models
 - Derive bulk properties from density
- Look at signatures of two mechanisms
 - Inward migration or scattering
Super-Earth Origins

enough to make super Earths
Scattering

formation on circular orbits

inner planet gets close periastron

circularised?
jupiters: maybe
earthss: unlikely
Scattering Results

Scattering to small periaestra possible

Low mass stars with close snow line

Circularisation unlikely \textit{(Raymond et al 2008)}

Summary

Possible around low mass stars

Hard to detect (long periods)
Migration

planets stop at inner disk edge
bigger planet = faster migration

disk gone
1-10 Myr
Migration model

Stellar mass (M\text{sun})

Planet mass (M\text{Earth})

Hot super-Earths

No hot super-Earths
Summary

Snow line important in both models

scattering: eccentric planets, hard to find

migration: possible, observational signatures
Disk Dispersal
Motivation

✦ Many clusters show mass dependence
✦ Expected from a simple dispersal model
✦ Planet orbits change with stellar mass
✦ Attempt to verify/quantify for use in models
Study

- Get IR and HαEW data for 1-10 Myr clusters
- Derive disk fractions, overall and in mass bins
- Look for stellar mass dependence, quantify
- Compare with model
- Effects on planet formation?
Disk Signatures

Inner Gap in Circumstellar Disk Spitzer Space Telescope • IRS
NASA / JPL-Caltech / D. Watson (University of Rochester) ssc2004-08c
Cluster HR diagrams

1. Taurus
2. Cha I
3. IC 348
4. Tr 37
5. NGC 2362
6. OB1bc
7. Upper Sco
8. OB1a/250ri
9. NGC 7160

log L (L/L$_{\odot}$) vs log T_{eff} (K)
Disk Fraction Decay

The graph shows the relationship between disk fraction and age (in Myr). Each point represents a different galaxy, labeled with numbers 1 to 9. The x-axis represents age in Myr, and the y-axis represents disk fraction.
Binned disk fractions

Solar mass bin fraction

super Solar mass bin fraction
Photoevaporative model

disk fraction

higher mass 1 Myr 10 Myr

lower mass

time

higher mass
Model Comparison

Solar mass bin fraction

super Solar mass bin fraction

Solar mass bin fraction
How many stars for 3σ?
Consequences?

Real?
Possible explanation

- Intermediate mass stars lose disks too early for planets to migrate
- Gap a direct result of faster disk dispersal
Summary & Future

- Some evidence of stellar mass dependent disk dispersal
- May cause observed exoplanet distributions
- More stars and clusters
- Get both IR and Hα for objects
- High resolution spectra (also binaries)
Summary
Snow line moves and sets where large planets form

Giant planet frequency changes with stellar mass

Also trends for super-Earth mass planets, testable by Kepler

Disk dispersal varies with stellar mass and has consequences for planet formation
Disk dispersal (outside-in)

Small Star with Evaporating Disk

Hot Massive Star

Tail

0.5 Light Year

Balog et al. 2006
Photoevaporation

- Critical radius
- Surface density
- Wind

Graph showing the spreading and photoevaporation of a T Tauri disk over time (0.5 Myr, 3 Myr, 6 Myr, 6.01 Myr, 6.02 Myr, 6.03 Myr, 6.06 Myr, 6.12 Myr).

Alexander et al. 2006
Range of Stellar Masses

t_{\text{core}} = 1.0 \times 10^6 \text{yr}

M_{\text{core}} = 10 M_{\odot}

\delta = 1.5

more mass in disk
Fig. 1. Metal distribution for planet-hosting (P-H) giants (full line), P-H dwarfs with periods larger than 180 days (dashed line) and all P-H dwarfs (dotted). The giants show a distribution shifted to lower metallicity by about 0.2–0.3 dex with respect to the dwarfs.
more conjunctions and start closer

filled: survivors
grey: ejected
blank: collisions

closest periastron

start farther and fewer conjunctions

snow line
Binned disk fractions
Model Comparison

The diagram shows a comparison of MB4 and MB3 fractions over log time (yr). The inset highlights specific data points with markers.